
Algorithmic category theory for reinforcement learning

Tanner Duve, Theo M. Tyburn, Andrea Abeje-Stine, Onkar Kale
Adjoint School 2025 • Mentor: Georgios Bakirtzis • TA: Michail Savvas

Tue 3 Jun 2025

Reinforcement learning (RL) solves problems through reward signals

Training can happen without having a complete model of the task.

The video game Dota 2 1

But RL faces serious limitations in solving complex problems

Some of the limitations of RL arise from:
• reward sparsity,
• huge action spaces → sample inefficiency,
• lack of stability → poor safety guarantees,
• poor generalization, and
• poor interpretability.

Environment

Agent

Ac
tio

n

Interpreter
Reward

State

Typical framing of an RL scenario

2

Compositionality is being used in RL to make problems more tractable

Compositionality is being used in RL
through two main paradigms:
1. Hierarchical RL

models sequential tasks that can be
split into independent sequential
subtasks.

2. Functional RL
models parallel tasks that can be
split into interacting subtasks.

A robotic task decomposed hierarchically and
functionally

3

Two major problems in RL can be solved by using compositionality

Two main problems in RL are
• Scalability: RL algorithms can have too complicated state and action spaces to

keep track of.
• Generalization: RL agents may overfit to their training environments and

perform poorly on new environments.

Compositionality can be used to solve both
• scalability through more efficient scaling methods and
• generalization by learning composable problems

4

Multi-agents scenarios suffer from both scaling and generalization issues

Multi-agent scenarios are generally modeled by taking the products of MDPs:
M1 × · · · ×Mn.

P4 × P4 • • • •

• • • • •

• • • • •

• • • • •

• • • • •
Problem: The action space A1 × · · · × An rapidly blows up.

5

We want to reduce the action space to something like this

P4□P4 • • • •

• • • • •

• • • • •

• • • • •

• • • • •

6

MDPs model sequential decision making under uncertainty

An Markov Decision Process (MDP)
M = (S,A, ψ,T,R) is composed
of the data:
• S — State space (measurable)
• A — Action space
• ψ : A → S — Action source function
• T : A → PS — Transition probability function
• R : A → R — Reward function

• • • •

• • • •

• • • •

• • • •

7

MDPs model sequential decision making under uncertainty

• • • •

• • • •

• • • •

• • • •

8

MDPs form the objects of the category MDP

Objects: MDPs
Morphisms:
m = (f, g) : M1 → M2
f : S1 → S2 (measurable)
g : A1 → A2

A1 A2

⟲

S1 S2

g

ψ1 ψ2

f

A1 A2

⟲

PS1 PS2

g

T1 T2

f∗

The category MDP has pushouts and partial pullbacks.

9

The category MDP has a nice semantic

subtasks injective morphisms

safety punctured MDP

symmetry quotient MDP

sequential tasks pushouts

parallel tasks products

10

We explorerd different categorical approaches of compositional RL

Through the category of MDP we studied
• A "box product" for MDP to potentially improve scalability
• A "twisted MDP" which is a combination of linear temporal logic specification

for requirements (safety and liveness) and MDPs for behavior to potentially
improve generalization

• Comonads to carry side information around in the category MDP

11

Injective maps in MDP model subprocess MDPs

M1 M2
(f, g)

12

Safety conditions are important for RL problems

Safe grid world: navigate to a goal state
while avoiding obstacle states.

13

Punctured MDPs enforce safety conditions

Let M = (S,A, ψ,T) be an MDP,
O ⊂ S.
• Punctured MDP:

M◦ = (S◦,A◦, ψ◦,T◦) where:
1. S◦ = S\O.
2. A◦ = A\(ψ−1(O) ∪ suppT(O)).
3. ψ◦ = ψ|A◦ .
4. T◦ = T|A◦ .

• M◦ is the canonical maximal
subprocess of S◦.

• • • •

• • • •

• • • •

• • • •

14

Sequential tasks can be modelled using pushouts of zig-zag diagrams

Ball Move Compound

Fetch Place

Ball Move Rest

15

Sequential tasks can be modelled using pushouts of zig-zag diagrams

Ball Move Compound

Fetch Place

Ball Move Rest

15

Parallel tasks can be modeled using products

To model n agents acting in parallel, we can take the cartesian product of MDPs:
M× · · · ×Mn.

P4 × P4 • • • •

• • • • •

• • • • •

• • • • •

• • • • •
Problem: The size of the action space A1 × · · · × An is |A1| · · · · · |An|.

16

We want to reduce the action space to something like this

Can we define a product M1□ . . .□Mn where the action space has a size
comparable to |A1|+ · · ·+ |An| ?

P4□P4 • • • •

• • • • •

• • • • •

• • • • •

• • • • •

17

Stationary actions are the building blocks of the box product

M = s t

M0 = s t

M = s t

a

as at

at

a

as

18

MDPs admit a box product

The box product is a generalization of the box product for graphs inspired by the
funny tensor product for categories.

Theorem
Given MDPs M1 and M2 we get the following pushout diagram:

(M1)0 × (M2)0 (M1)0 ×M2

M1 × (M2)0 M1□M2

we call M1□M2 the box product of MDPs M1 and M2.
19

The box product has a tractable action space

1. State space S = S1 × S2

2. Action space is given by

A = A1 × (A2)0 ⨿ (A1)0 × A2/ ∼

where ∼ identifies redundant stationary states.
For large action spaces:

|S1| · |A2|+ |S2| · |A1| ≪ |A1| · |A2|

20

The size of action space grows much slower for the box product

21

We wrote a python library to conduct experiments

https://codeberg.org/bakirtzis/ctmdp

22

https://codeberg.org/bakirtzis/ctmdp

Comonads as Side Information

Motivation.
In functional programming, comonads represent computations that use context.
In RL, side information is additional knowledge not encoded in the MDP

Hypothesis.
Comonads in the category MDP can formally model side information

Examples of side info we constructed comonads for:
• Safety constraints (e.g. unsafe region avoidance via twisted MDP)
• Symmetry structure (e.g. group actions, orbit-aware generalization)
• History context (e.g. fixed-length memory)

23

Towards algorithmic category theory for RL

The approach: use category theory to come up with concrete algorithms.

The hope: the category MDP (or an extesion of it) is the right framework to develop
a theory of decomposition of RL agents that is stable under generalization.

The goal: provide RL practitioners with tools for:
• reward design,
• reusability and generalization,
• training efficiency via action space reduction.

24

Summary of the school

1. Problems we tried solving
◦ generalization
◦ scaling

2. Solution: use compositional methods
◦ Sequential composition: pushouts of MDPS
◦ Functional composition: box products
◦ Composing side information: comonads

3. Further things we want to investigate
◦ Extensions of span and cospan categories
◦ Introducing error terms into MDP morphisms
◦ MDPs as coalgebras
◦ (Probabilistic) Linear Temporal Logic
◦ Partially Observable MDPs

25

Sources

• Categorical semantics of compositional reinforcement learning, Georgios
Bakirtzis, Michail Savvas, and Ufuk Topcu

• Structure in Deep Reinforcement Learning: A Survey and Open Problems, Aditya
Mohan, Amy Zhang, Marius Lindauer

• Categorical Semantics of motion planning, Georgios Bakirtzis and Ufuk Topcu

26

https://arxiv.org/abs/2208.13687
https://arxiv.org/abs/2306.16021
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Research_Frazzoli/workshops/22ICRA.pdf

THANK YOU FOR YOUR ATTENTION!

27

