ization

Query complexity

Algebraic query complexity

The need for non-algebrizing technique

Conclusion O

Algebrization

Jesse Comer & Tanner Duve

June 2023

S. Aaronson & A. Wigderson. *Algebrization: A New Barrier in Complexity Theory*, 2008

Query compl 0000

Barriers in Complexity Theory

This talk is about the *difficulty* of resolving many open complexity-theoretic problems.

Some important complexity-theoretic statements and proofs are known to relativize.

Algebrization is a generalization of the notion of relativization.

We will use two running examples:

 $\textbf{PSPACE} \subseteq \textbf{IP}$

and

$\mathbf{NP} \subseteq \mathbf{P}.$

Query compl 0000 Algebraic query complexity

The need for non-algebrizing technique

Conclusion O

Diagonalization

Recall:

Definition (Diagonalization)

Diagonalization is any technique that relies solely on the following properties of TMs:

- 1. (Encodings) The existence of an effective representation of TMs by strings.
- 2. (Simulation) The ability of one TM to simulate another without much overhead in running time or space.

Examples:

- the undecidability of the halting problem
- the time hierarchy theorems.

Let $\mathcal{C},\ \mathcal{D}$ denote arbitrary complexity classes.

A containment $C \subseteq D$ relativizes if, for all oracles A, we have that $C^A \subseteq D^A$.

A separation $\mathcal{C} \not\subseteq \mathcal{D}$ relativizes if, for all oracles A, we have that $\mathcal{C}^A \not\subseteq \mathcal{D}^A$.

A *proof technique* of a complexity-theoretic statement relativizes if it is still valid (with only small changes) when the classes are taken relative to an arbitrary oracle A.

All proofs using only diagonalization are relativizing.

Theorem (Baker, Gill, Solovay, 1975)

There exist oracles A and B such that $\mathbf{P}^{A} = \mathbf{NP}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{NP}^{B}$.

It follows that any proof of $\mathbf{P} = \mathbf{NP}$ or $\mathbf{P} \subsetneq \mathbf{NP}$ must use non-relativizing techniques.

In particular, diagonalization alone cannot resolve **P** vs **NP**.

Do we have any non-relativizing techniques?

It is known that $\textbf{PSPACE} \subseteq \textbf{IP}$ is not a relativizing result:

Theorem (Chang et. al., 1988)

There exist oracles A and B such that $IP^A = PSPACE^A$ and $IP^B \neq PSPACE^B$.

In fact:

Introduction

Theorem (Fortnow, Sipser, 1988)

There exist an oracle A such that $\mathbf{coNP}^A \not\subseteq \mathbf{IP}^A$.

Yet...

Theorem (Shamir, 1992)

IP = PSPACE.

Query comple

Algebraic query complexity

The need for non-algebrizing technique

Conclusion O

$\mathsf{PSPACE} \subseteq \mathsf{IP}$

Could the techniques in the proof of the IP theorem help us resolve P vs NP?

Theorem

 $\mathsf{PSPACE} \subseteq \mathsf{IP}.$

Proof.

Since TQBF is **PSPACE**-complete, it suffices to give an interactive protocol for TQBF. Let $\varphi := \forall x_1 \exists x_2 \forall x_3 \dots \exists x_n \psi(x_1, x_2, \dots, x_n)$ be an input to TQBF.

Using arithmetization and linearization operators on φ , we obtain the expression

$$\forall x_1 L_1 \exists x_2 L_1 L_2 \forall x_3 L_1 L_2 L_3 \dots \exists x_n L_1 L_2 \dots L_n p_{\varphi}(X_1, \dots, X_n),$$

which the prover must convince the verifier is nonzero.

Query compl 0000 Algebraic query complexity

The need for non-algebrizing technique

Conclusion O

$\mathsf{PSPACE} \subseteq \mathsf{IP}$

Theorem

 $\mathsf{PSPACE} \subseteq \mathsf{IP}.$

Proof.

Each round:

- *P* sends a univariate polynomial $S(X_i)$, claiming that $OS(X_i) = C_i$ for some $C_i \in \mathbb{F}$, where $O \in \{\exists X_i, \forall X_i, L_{X_i}\}$;
- V checks S(0) + S(1), $S(0) \cdot S(1)$, or $a_1S(0) + (1 a_1)S(1)$, depending on O;
- V sends a $r_i \in_R \mathbb{F}$ and requests that P show that $S(r_i)$ evaluates correctly.

In the final round, the verifier has a univariate polynomial $S(X_1)$, which P claims is equal to $C_1 \in \mathbb{F}$. The verifier directly evaluates $S(r_1)$ for some $r_1 \in_R \mathbb{F}$.

Why exactly doesn't this proof relativize?

Algebraic query complexity

The need for non-algebrizing techniques

Why does the proof of **PSPACE** \subseteq **IP** not relativize?

Claim (False!)

 $\mathsf{PSPACE}^A \subseteq \mathsf{IP}^A$ for any oracle A.

Proof.

TQBF, in general, is not complete for **PSPACE**^A.

We now must consider $TQBF^A$, in which the underlying formula might contain gates calling the oracle *A*; this problem is **PSPACE**^{*A*}-complete for any oracle *A*.

Let $\varphi := \forall x_1 \exists x_2 \forall x_3 \dots \exists x_n \psi(x_1, x_2, \dots, x_n)$ be an input to TQBF^A.

Q: How do we arithmetize a formula with A gates?

A: Extension polynomials!

Algebraic query complexity

The need for non-algebrizing techniques

Extension Polynomials and Oracles (over Finite Fields)

Definition (Extension Polynomials)

Let $A_m : \{0,1\}^m \to \{0,1\}$ be a Boolean function, and let \mathbb{F} be a finite field. Then an *extension polynomial* of A_m over \mathbb{F} is a polynomial $\tilde{A}_{m,\mathbb{F}} : \mathbb{F}^m \to \mathbb{F}$ such that $\tilde{A}_{m,\mathbb{F}}(x) = A_m(x)$ whenever $x \in \{0,1\}^m$.

Definition (Oracles)

Algebrization

An oracle A is a collection $(A_m)_{m \in \mathbb{Z}^+}$, where $A_m : \{0,1\}^m \to \{0,1\}$.

Extension Polynomials and Oracles (over Finite Fields)

Definition (Extension Oracles)

Algebrization

An extension oracle \tilde{A} of an oracle A is a collection of polynomials $\tilde{A}_{m,\mathbb{F}} : \mathbb{F}^m \to \mathbb{F}$, one for each $m \in \mathbb{Z}^+$ and finite field \mathbb{F} such that

- 1. $\tilde{A}_{m,\mathbb{F}}$ is an extension of A_m for all m and \mathbb{F} , and
- 2. there exists some c such that $mdeg(\tilde{A}_{m,\mathbb{F}}) \leq c$ for all m and \mathbb{F} ,

where mdeg(p) (the multidegree of p) denotes the maximum degree of any x_i .

Given a complexity class C, we write C^A for the class of languages decidable by a C machine that can query $\tilde{A}_{m,\mathbb{F}}$ for any integer m and finite field \mathbb{F} .

Let's return to our attempt to relativize the proof that **PSPACE** \subseteq **IP**.

Why does the proof of **PSPACE** \subseteq **IP** not relativize?

Claim (False!)

Algebrization

 $\mathsf{PSPACE}^{\mathsf{A}} \subseteq \mathsf{IP}^{\mathsf{A}}$ for any oracle A .

Proof.

Let $\varphi := \forall x_1 \exists x_2 \forall x_3 \dots \exists x_n \psi(x_1, x_2, \dots, x_n)$ be an input to TQBF^A. When arithmetizing this formula, we replace an A gate with *m* inputs with $\tilde{A}_{m,\mathbb{F}}$. The interactive steps and checks all work exactly the same.

In the final step, V needs to directly evaluate the polynomial over a randomly chosen field element. This may not be possible:

He has access to A_m , but he needs access to $\tilde{A}_{m,\mathbb{F}}$.

Theorem

PSPACE^A \subseteq **IP**^{\tilde{A}} for any oracle A, and any finite field extension \tilde{A} of A.

Theorem

PSPACE^A \subseteq **IP**^{\tilde{A}} for any oracle A, and any finite field extension \tilde{A} of A.

Let's turn this into a definition:

Definition

We say the complexity class inclusion $C \subseteq D$ algebrizes if $C^A \subseteq D^{\tilde{A}}$ for all oracles A and all finite field extensions \tilde{A} of A.

Definition

We say the separation $\mathcal{C} \not\subseteq \mathcal{D}$ algebrizes if $\mathcal{C}^{\tilde{A}} \not\subseteq D^{A}$ for all A, \tilde{A} .

PSPACE \subseteq **IP** does not *relativize*, but it does *algebrize*.

Query complexity

Algebraic query complexity

The need for non-algebrizing technique

Conclusion o

Deterministic Query Complexity

Let $A: \{0,1\}^n \to \{0,1\}$ be a Boolean function.

We can view A as a length $N = 2^n$ string encoding its truth table.

For example, the MAJORITY function on 3-bit inputs has the following truth table:

Input 1	Input 2	Input 3	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

and would be represented by the string 00010111 of length $N = 2^3 = 8$.

Algebrization

Query complexity

Algebraic query complexity

The need for non-algebrizing technique

Conclusion O

Deterministic Query Complexity

Let $N = 2^n$. We can view a Boolean function $f : \{0,1\}^N \to \{0,1\}$ as computing a property of functions $A : \{0,1\}^n \to \{0,1\}$.

Suppose we can compute f by querying the input A at various points $x \in \{0,1\}^n$.

The deterministic query complexity of f (notation: D(f)) is the minimum number of queries made by any deterministic algorithm that evaluates f on every input.

Query complexity

Algebraic query complexity

The need for non-algebrizing technique

Conclusion o

Deterministic Query Complexity

Definition (Deterministic Query Complexity)

Let $f : \{0,1\}^N \to \{0,1\}$ be a Boolean function, and let \mathcal{M} be the set of deterministic algorithms M such that M^A outputs f(A) for every oracle $A : \{0,1\}^n \to \{0,1\}$.

Then the deterministic query complexity of f is defined as

 $D(f) := \min_{m \in \mathcal{M}} \max_{A} T_M(A),$

where $T_M(A)$ is the number of queries to A made by M^A .

Lower bounds are proven via adversary arguments.

Deterministic Query Complexity Example: OR

Consider $OR: \{0,1\}^N \rightarrow \{0,1\}$, where

$$OR(A) = 1$$
 if and only if $A(x) = 1$ for some $x \in \{0, 1\}$.

Proposition

 $D(OR)=2^n.$

Proof.

Suppose some algorithm M makes only $k < 2^n$ queries in the worst case.

Then it makes at most k queries $x_1, \ldots, x_k \in \{0, 1\}^n$ on the all-zeroes function $A : \{0, 1\}^n \to \{0, 1\}.$

We can choose $B : \{0,1\}^n \to \{0,1\}$ so that it agrees with A on $x_1, \ldots x_k$, but has B(y) = 1 for some $y \in \{0,1\}^n$ such that $y \neq x_i$ for all $i \leq k$.

Algebraic query complexity

The need for non-algebrizing techniques

Conclusion O

Algebraic Query Complexity

Definition (Deterministic Algebraic Query Complexity)

Query complexity

Let $f : \{0,1\}^N \to \{0,1\}$ be a Boolean function, \mathbb{F} a finite field, and $c \in \mathbb{Z}^+$.

Let \mathcal{M} be the set of deterministic algorithms M such that $M^{\tilde{A}}$ outputs f(A) for every oracle $A : \{0,1\}^n \to \{0,1\}$ and finite field extension $\tilde{A} : \mathbb{F}^n \to \mathbb{F}$ of A with $mdeg(\tilde{A}) \leq c$.

Then the deterministic algebraic query complexity of f over $\mathbb F$ is defined as

$$ilde{D}_{\mathbb{F},c}(f):=\min_{m\in\mathcal{M}}\max_{A, ilde{A}:mdeg(ilde{A})\leq c}T_M(ilde{A}),$$

where $T_M(\tilde{A})$ is the number of queries to \tilde{A} made by $M^{\tilde{A}}$.

To prove lower bounds, we construct adversary polynomials.

Facts about Multilinear Polynomials

First, we state some facts regarding multilinear polynomials.

Let $z = z_1 \dots z_n \in \{0, 1\}^n$. Define

$$\delta_z(x) = \prod_{i \leq n: z_i=1} x_i \prod_{i \leq n: z_i=0} (1-x_i).$$

Then for any multilinear polynomial $m : \mathbb{F}^n \to \mathbb{F}$, we can write *m* as follows:

$$m(x) = \sum_{z \in \{0,1\}^n} m_z \delta_z(x).$$

Furthermore, every Boolean function $A : \{0,1\}^n \to \{0,1\}$ has a unique multilinear extension over a field \mathbb{F} .

Algebraic query complexity

The need for non-algebrizing techniques

Conclusion O

Lower Bounds for Algebraic Query Complexity

Lemma

Let \mathbb{F} be a field and let y_1, \ldots, y_t be points in \mathbb{F}^n . Then there exists a multilinear polynomial $m : \mathbb{F}^n \to \mathbb{F}$ such that

- 1. $m(y_i) = 0$ for all $i \in [t]$, and
- 2. m(z) = 1 for at least $2^n t$ Boolean points z.

Proof.

Suppose

$$m(x) = \sum_{z \in \{0,1\}^n} m_z \delta_z(x).$$

Then requirement (1) corresponds to t linear equations over \mathbb{F} in the variables m_z .

Then we can choose a solution to this system of equations with $2^n - t$ of the m_z 's set to 1. Hence m(z) = 1 for at least $2^n - t$ values.

Lower Bounds for Algebraic Query Complexity

Lemma (Adversary Lemma)

Let \mathbb{F} be a field and let y_1, \ldots, y_t be points in \mathbb{F}^n . Then for at least $2^n - t$ Boolean points $w \in \{0,1\}^n$, there exists a multiquadratic extension polynomial $p : \mathbb{F}^n \to \mathbb{F}$ such that

1.
$$p(y_i) = 0$$
 for all $i \in [t]$,

2.
$$p(w) = 1$$
, and

3.
$$p(z) = 0$$
 for all Boolean points $z \neq w$.

Proof.

Let $m : \mathbb{F}^n \to \mathbb{F}$ be the multilinear polynomial from the preceding lemma, and let $w \in \{0,1\}^n$ be such that m(w) = 1.

Then $p(x) = m(x)\delta_w(x)$ satisfies (1)-(3).

Lower Bounds for Algebraic Query Complexity

Lemma (Generalized Adversary Lemma)

Let $f : \{0,1\}^n \to \{0,1\}$ be a Boolean function, and let \mathcal{F} be a collection of fields (possibly with multiplicity).

For every $\mathbb{F} \in \mathcal{F}$, let $\mathcal{Y}_{\mathbb{F}} \subseteq \mathbb{F}^n$, and $p_{\mathbb{F}} : \mathbb{F}^n \to \mathbb{F}$ be a multiquadratic polynomial over \mathbb{F} extending f.

Then there exists $B \subseteq \{0,1\}^n$ with $|B| \leq \sum_{\mathbb{F} \in \mathcal{C}} |\mathcal{Y}_{\mathcal{F}}|$ such that, for all Boolean function $f' : \{0,1\}^n \to \{0,1\}$ that agree with f on B, there exist multiquadratic polynomials $p'_{\mathbb{F}} : \mathbb{F}^n \to \mathbb{F}$ (one for each $\mathbb{F} \in \mathcal{F}$) such that (i) $p'_{\mathbb{F}}$ extends f', and (ii) $p'_{\mathbb{F}}(y) = p_{\mathbb{F}}(y)$ for all $y \in \mathcal{Y}_{\mathbb{F}}$.

Query comp

Algebraic query complexity

The need for non-algebrizing techniques ${\scriptstyle \bullet 00000}$

Conclusion

$\mathbf{NP} \not\subseteq \mathbf{P}$ does not algebrize

Theorem

There exist A, \tilde{A} such that $\mathbf{NP}^{\tilde{A}} \subseteq \mathbf{P}^{A}$.

Proof.

Let A be any **PSPACE**-complete language, and \tilde{A} its unique multilinear extension.

The multilinear extension of a **PSPACE** language can be computed in **PSPACE** (Babai, Fortnow, Lund, 1991).

Thus

$$NP^{\tilde{A}} = NP^{PSPACE} \subseteq NPSPACE = PSPACE \subseteq P^{PSPACE} = P^{A}$$
.

Query comple

Algebraic query complexity

The need for non-algebrizing techniques 00000

Conclusion O

$\mathbf{NP} \subseteq \mathbf{P}$ does not algebrize

Theorem

There exist A, \tilde{A} such that $\mathbf{NP}^A \not\subseteq \mathbf{P}^{\tilde{A}}$.

Proof.

The proof is analogous to the BGS lazy diagonalization construction.

We construct the oracle A and its extension oracle \tilde{A} recursively.

At each stage of the construction, we fix some A_m functions, as well as $\tilde{A}_{m,\mathbb{F}}$ for *every* finite field \mathbb{F} .

The key difference from the BGS proof is that, when we simulate a machine M_i and it rejects an input 1^n , we will use the generalized adversary lemma to choose an appropriate extension oracle.

Query complexity

Algebraic query complexity

The need for non-algebrizing techniques 00000

Conclusion 0

$\mathbf{NP} \subseteq \mathbf{P}$ does not algebrize

Proof.

Clearly, the following language is in NP^A for all oracles A:

$$L = \{1^n \mid \exists w \in \{0,1\}^n \text{ s.t. } A_n(w) = 1\}.$$

We want to choose A and \tilde{A} so that $L \not\in \mathbf{P}^{\tilde{A}}$.

Fix an enumeration M_1, M_2, \ldots of all **DTIME** $(n^{\log(n)})$ oracle machines. Define

$$M_i(n) = egin{cases} 1 & ext{if } M_i ext{ accepts } 1^n \ 0 & ext{otherwise.} \end{array}$$
 and $L(n) = egin{cases} 1 & ext{if } 1^n \in L \ 0 & ext{otherwise.} \end{cases}$

We want to ensure that for each $i \in \mathbb{Z}^+$, there's some $n \in \mathbb{Z}^+$ such that

 $M_i(n) \neq L(n).$

Query comple

Algebraic query complexity

The need for non-algebrizing techniques

Conclusion O

$\mathbf{NP} \subseteq \mathbf{P}$ does not algebrize

Proof.

The construction of \tilde{A} proceeds in stages:

- Assume for each j < i that
 - 1. L(j) is fixed, and
 - 2. there's some n_j such that $M_j(n_j) \neq L(n_j)$.
- Let S_j be the set of indices *n* such that some $\tilde{A}_{n,\mathbb{F}}$ is queried by M_j on input 1^{n_j} .
- Let $T_i := \bigcup_{j < i} S_j$.
- For each $n \in T_i$, we consider $\tilde{A}_{n,\mathbb{F}}$ to be fixed.
- Let n_i be least such that $n_i \notin T_i$ and $2^{n_i} > n_i^{\log(n_i)}$.
- Simulate M_i on 1^{n_i} . If M_i queries some $\tilde{A}_{n,\mathbb{F}}(y)$, then
 - 1. If $n \in T_i$, return consistently;
 - 2. Otherwise, return 0.

Query comp 0000 Algebraic query complexity

The need for non-algebrizing techniques $0000 \bullet 0$

Conclusion O

$\mathbf{NP} \subseteq \mathbf{P}$ does not algebrize

Proof.

Let S_i denote the set of *n* such that M_i queried some $\tilde{A}_{n,\mathbb{F}}$.

For all $m \in S_i \setminus T_i$, other than n_i , and all \mathbb{F} , set $\tilde{A}_{n,\mathbb{F}}$ to the constant 0 polynomial.

For n_i , we distinguish cases, depending on whether or not M_i accepted 1^{n_i} .

If M_i accepted 1^{n_i} , then we set $\tilde{A}_{n_i,\mathbb{F}}$ to the constant 0 polynomial for all \mathbb{F} (and hence $L(n_i) = 0$).

Query compl

Algebraic query complexity

The need for non-algebrizing techniques

Conclusion O

$\mathbf{NP} \subseteq \mathbf{P}$ does not algebrize

Proof.

If
$$M_i$$
 rejected 1^{n_i} , then let $\mathcal{Y}_{\mathbb{F}} = \{y \in \mathbb{F}^{n_i} \mid M_i \text{ queried } \tilde{A}_{n_i,\mathbb{F}(y)}\}.$

We must have that $\sum_{\mathbb{F}} |\mathcal{Y}_{\mathbb{F}}| \leq n_i^{\log(n_i)}$.

By the generalized adversary lemma, there exists $w \in \{0,1\}^{n_i}$ such that for all \mathbb{F} , we can choose a multiquadratic polynomial $\tilde{A}_{n_i,\mathbb{F}}: \mathbb{F}^{n_i} \to \mathbb{F}$ such that

(i)
$$\tilde{A}_{n_i,\mathbb{F}}(y) = 0$$
 for all $y \in \mathcal{Y}_{\mathbb{F}}$,
(ii) $\tilde{A}_{n_i,\mathbb{F}}(w) = 1$, and
(iii) $\tilde{A}_{n_i,\mathbb{F}}(z) = 0$ for all Boolean $z \neq w$.

In particular, the answers to queries to $\tilde{A}_{n_i,\mathbb{F}}$ are consistent with all queries that have been make so far, but $\tilde{A}_{n_i,\mathbb{F}}(w) = 1$ for some $w \in \{0,1\}^n$.

Thus $L(n_i) = 1$.

Query comple: 0000 Algebraic query complexity

The need for non-algebrizing technique

Conclusion

Concluding remarks

Some additional non-algebrizing statements:

- 1. PSPACE $\not\subseteq$ P,
- 2. NP \subseteq BPP,
- 3. NP \subseteq P/poly,
- 4. NEXP $\not\subseteq$ P/poly,
- 5. $\mathbf{EXP^{NP}} \not\subseteq \mathbf{P}/\mathbf{poly},$
- 6. and more....

Questions?