
Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Algebrization

Jesse Comer & Tanner Duve

June 2023

S. Aaronson & A. Wigderson. Algebrization: A New Barrier in Complexity Theory,
2008

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Barriers in Complexity Theory

This talk is about the difficulty of resolving many open complexity-theoretic problems.

Some important complexity-theoretic statements and proofs are known to relativize.

Algebrization is a generalization of the notion of relativization.

We will use two running examples:

PSPACE ⊆ IP

and

NP ⊆ P.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Diagonalization

Recall:

Definition (Diagonalization)

Diagonalization is any technique that relies solely on the following properties of TMs:

1. (Encodings) The existence of an effective representation of TMs by strings.

2. (Simulation) The ability of one TM to simulate another without much overhead in
running time or space.

Examples:

• the undecidability of the halting problem

• the time hierarchy theorems.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Relativization

Let C, D denote arbitrary complexity classes.

A containment C ⊆ D relativizes if, for all oracles A, we have that CA ⊆ DA.

A separation C ̸⊆ D relativizes if, for all oracles A, we have that CA ̸⊆ DA.

A proof technique of a complexity-theoretic statement relativizes if it is still valid (with
only small changes) when the classes are taken relative to an arbitrary oracle A.

All proofs using only diagonalization are relativizing.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Recall: P vs NP does not relativize

Theorem (Baker, Gill, Solovay, 1975)

There exist oracles A and B such that PA = NPA and PB ̸= NPB .

It follows that any proof of P = NP or P ⊊ NP must use non-relativizing techniques.

In particular, diagonalization alone cannot resolve P vs NP.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Do we have any non-relativizing techniques?

It is known that PSPACE ⊆ IP is not a relativizing result:

Theorem (Chang et. al., 1988)

There exist oracles A and B such that IPA = PSPACEA and IPB ̸= PSPACEB .

In fact:

Theorem (Fortnow, Sipser, 1988)

There exist an oracle A such that coNPA ̸⊆ IPA.

Yet...

Theorem (Shamir, 1992)

IP = PSPACE.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

PSPACE ⊆ IP

Could the techniques in the proof of the IP theorem help us resolve P vs NP?

Theorem

PSPACE ⊆ IP.

Proof.

Since TQBF is PSPACE-complete, it suffices to give an interactive protocol for
TQBF. Let φ := ∀x1∃x2∀x3 . . . ∃xnψ(x1, x2, . . . , xn) be an input to TQBF.

Using arithmetization and linearization operators on φ, we obtain the expression

∀x1L1∃x2L1L2∀x3L1L2L3 . . . ∃xnL1L2 . . . Lnpφ(X1, . . . ,Xn),

which the prover must convince the verifier is nonzero.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

PSPACE ⊆ IP

Theorem

PSPACE ⊆ IP.

Proof.

Each round:

• P sends a univariate polynomial S(Xi), claiming that OS(Xi) = Ci for some
Ci ∈ F, where O ∈ {∃Xi ,∀Xi , LXi

};
• V checks S(0) + S(1), S(0) · S(1), or a1S(0) + (1− a1)S(1), depending on O;

• V sends a ri ∈R F and requests that P show that S(ri) evaluates correctly.

In the final round, the verifier has a univariate polynomial S(X1), which P claims is
equal to C1 ∈ F. The verifier directly evaluates S(r1) for some r1 ∈R F.

Why exactly doesn’t this proof relativize?

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Why does the proof of PSPACE ⊆ IP not relativize?

Claim (False!)

PSPACEA ⊆ IPA for any oracle A.

Proof.

TQBF, in general, is not complete for PSPACEA.

We now must consider TQBFA, in which the underlying formula might contain gates
calling the oracle A; this problem is PSPACEA-complete for any oracle A.

Let φ := ∀x1∃x2∀x3 . . . ∃xnψ(x1, x2, . . . , xn) be an input to TQBFA.

Q: How do we arithmetize a formula with A gates?

A: Extension polynomials!

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Extension Polynomials and Oracles (over Finite Fields)

Definition (Extension Polynomials)

Let Am : {0, 1}m → {0, 1} be a Boolean function, and let F be a finite field. Then an
extension polynomial of Am over F is a polynomial Ãm,F : Fm → F such that
Ãm,F(x) = Am(x) whenever x ∈ {0, 1}m.

Definition (Oracles)

An oracle A is a collection (Am)m∈Z+ , where Am : {0, 1}m → {0, 1}.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Extension Polynomials and Oracles (over Finite Fields)

Definition (Extension Oracles)

An extension oracle Ã of an oracle A is a collection of polynomials Ãm,F : Fm → F, one
for each m ∈ Z+ and finite field F such that

1. Ãm,F is an extension of Am for all m and F, and
2. there exists some c such that mdeg(Ãm,F) ≤ c for all m and F,

where mdeg(p) (the multidegree of p) denotes the maximum degree of any xi .

Given a complexity class C, we write CÃ for the class of languages decidable by a C
machine that can query Ãm,F for any integer m and finite field F.

Let’s return to our attempt to relativize the proof that PSPACE ⊆ IP.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Why does the proof of PSPACE ⊆ IP not relativize?

Claim (False!)

PSPACEA ⊆ IPA for any oracle A.

Proof.

Let φ := ∀x1∃x2∀x3 . . . ∃xnψ(x1, x2, . . . , xn) be an input to TQBFA. When
arithmetizing this formula, we replace an A gate with m inputs with Ãm,F.
The interactive steps and checks all work exactly the same.

In the final step, V needs to directly evaluate the polynomial over a randomly chosen
field element. This may not be possible:

He has access to Am, but he needs access to Ãm,F.

Theorem

PSPACEA ⊆ IPÃ for any oracle A, and any finite field extension Ã of A.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Algebrization

Theorem

PSPACEA ⊆ IPÃ for any oracle A, and any finite field extension Ã of A.

Let’s turn this into a definition:

Definition

We say the complexity class inclusion C ⊆ D algebrizes if CA ⊆ DÃ for all oracles A
and all finite field extensions Ã of A.

Definition

We say the separation C ̸⊆ D algebrizes if CÃ ̸⊆ DA for all A, Ã.

PSPACE ⊆ IP does not relativize, but it does algebrize.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Deterministic Query Complexity

Let A : {0, 1}n → {0, 1} be a Boolean function.

We can view A as a length N = 2n string encoding its truth table.

For example, the MAJORITY function on 3-bit inputs has the following truth table:

Input 1 Input 2 Input 3 Output

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

and would be represented by the string 00010111 of length N = 23 = 8.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Deterministic Query Complexity

Let N = 2n. We can view a Boolean function f : {0, 1}N → {0, 1} as computing a
property of functions A : {0, 1}n → {0, 1}.

Suppose we can compute f by querying the input A at various points x ∈ {0, 1}n.

The deterministic query complexity of f (notation: D(f)) is the minimum number of
queries made by any deterministic algorithm that evaluates f on every input.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Deterministic Query Complexity

Definition (Deterministic Query Complexity)

Let f : {0, 1}N → {0, 1} be a Boolean function, and let M be the set of deterministic
algorithms M such that MA outputs f (A) for every oracle A : {0, 1}n → {0, 1}.

Then the deterministic query complexity of f is defined as

D(f) := min
m∈M

max
A

TM(A),

where TM(A) is the number of queries to A made by MA.

Lower bounds are proven via adversary arguments.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Deterministic Query Complexity Example: OR

Consider OR : {0, 1}N → {0, 1}, where

OR(A) = 1 if and only if A(x) = 1 for some x ∈ {0, 1}.

Proposition

D(OR) = 2n.

Proof.

Suppose some algorithm M makes only k < 2n queries in the worst case.

Then it makes at most k queries x1, . . . , xk ∈ {0, 1}n on the all-zeroes function
A : {0, 1}n → {0, 1}.

We can choose B : {0, 1}n → {0, 1} so that it agrees with A on x1, . . . xk , but has
B(y) = 1 for some y ∈ {0, 1}n such that y ̸= xi for all i ≤ k .

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Algebraic Query Complexity

Definition (Deterministic Algebraic Query Complexity)

Let f : {0, 1}N → {0, 1} be a Boolean function, F a finite field, and c ∈ Z+.

Let M be the set of deterministic algorithms M such that M Ã outputs f (A) for every
oracle A : {0, 1}n → {0, 1} and finite field extension Ã : Fn → F of A with
mdeg(Ã) ≤ c.

Then the deterministic algebraic query complexity of f over F is defined as

D̃F,c(f) := min
m∈M

max
A,Ã:mdeg(Ã)≤c

TM(Ã),

where TM(Ã) is the number of queries to Ã made by M Ã.

To prove lower bounds, we construct adversary polynomials.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Facts about Multilinear Polynomials

First, we state some facts regarding multilinear polynomials.

Let z = z1 . . . zn ∈ {0, 1}n. Define

δz(x) =
∏

i≤n:zi=1

xi
∏

i≤n:zi=0

(1− xi).

Then for any multilinear polynomial m : Fn → F, we can write m as follows:

m(x) =
∑

z∈{0,1}n
mzδz(x).

Furthermore, every Boolean function A : {0, 1}n → {0, 1} has a unique multilinear
extension over a field F.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Lower Bounds for Algebraic Query Complexity

Lemma

Let F be a field and let y1, . . . , yt be points in Fn. Then there exists a multilinear
polynomial m : Fn → F such that

1. m(yi) = 0 for all i ∈ [t], and

2. m(z) = 1 for at least 2n − t Boolean points z .

Proof.

Suppose

m(x) =
∑

z∈{0,1}n
mzδz(x).

Then requirement (1) corresponds to t linear equations over F in the variables mz .

Then we can choose a solution to this system of equations with 2n − t of the mz ’s set
to 1. Hence m(z) = 1 for at least 2n − t values.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Lower Bounds for Algebraic Query Complexity

Lemma (Adversary Lemma)

Let F be a field and let y1, . . . , yt be points in Fn. Then for at least 2n − t Boolean
points w ∈ {0, 1}n, there exists a multiquadratic extension polynomial p : Fn → F such
that

1. p(yi) = 0 for all i ∈ [t],

2. p(w) = 1, and

3. p(z) = 0 for all Boolean points z ̸= w .

Proof.

Let m : Fn → F be the multilinear polynomial from the preceding lemma, and let
w ∈ {0, 1}n be such that m(w) = 1.

Then p(x) = m(x)δw (x) satisfies (1)-(3).

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Lower Bounds for Algebraic Query Complexity

Lemma (Generalized Adversary Lemma)

Let f : {0, 1}n → {0, 1} be a Boolean function, and let F be a collection of fields
(possibly with multiplicity).

For every F ∈ F , let YF ⊆ Fn, and pF : Fn → F be a multiquadratic polynomial over F
extending f .

Then there exists B ⊆ {0, 1}n with |B| ≤
∑

F∈C |YF | such that, for all Boolean
function f ′ : {0, 1}n → {0, 1} that agree with f on B, there exist multiquadratic
polynomials p′F : Fn → F (one for each F ∈ F) such that

(i) p′F extends f ′, and

(ii) p′F(y) = pF(y) for all y ∈ YF.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ̸⊆ P does not algebrize

Theorem

There exist A, Ã such that NPÃ ⊆ PA.

Proof.

Let A be any PSPACE-complete language, and Ã its unique multilinear extension.

The multilinear extension of a PSPACE language can be computed in PSPACE
(Babai, Fortnow, Lund, 1991).

Thus
NPÃ = NPPSPACE ⊆ NPSPACE = PSPACE ⊆ PPSPACE = PA.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ⊆ P does not algebrize

Theorem

There exist A, Ã such that NPA ̸⊆ PÃ.

Proof.

The proof is analogous to the BGS lazy diagonalization construction.

We construct the oracle A and its extension oracle Ã recursively.

At each stage of the construction, we fix some Am functions, as well as Ãm,F for every
finite field F.

The key difference from the BGS proof is that, when we simulate a machine Mi and it
rejects an input 1n, we will use the generalized adversary lemma to choose an
appropriate extension oracle.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ⊆ P does not algebrize

Proof.

Clearly, the following language is in NPA for all oracles A:

L = {1n | ∃w ∈ {0, 1}n s.t. An(w) = 1}.

We want to choose A and Ã so that L ̸∈ PÃ.

Fix an enumeration M1,M2, . . . of all DTIME(nlog(n)) oracle machines. Define

Mi (n) =

{
1 if Mi accepts 1

n

0 otherwise.
and L(n) =

{
1 if 1n ∈ L

0 otherwise.

We want to ensure that for each i ∈ Z+, there’s some n ∈ Z+ such that

Mi (n) ̸= L(n).

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ⊆ P does not algebrize

Proof.

The construction of Ã proceeds in stages:
• Assume for each j < i that

1. L(j) is fixed, and
2. there’s some nj such that Mj(nj) ̸= L(nj).

• Let Sj be the set of indices n such that some Ãn,F is queried by Mj on input 1nj .

• Let Ti :=
⋃

j<i Sj .

• For each n ∈ Ti , we consider Ãn,F to be fixed.

• Let ni be least such that ni ̸∈ Ti and 2ni > n
log(ni)
i .

• Simulate Mi on 1ni . If Mi queries some Ãn,F(y), then

1. If n ∈ Ti , return consistently;
2. Otherwise, return 0.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ⊆ P does not algebrize

Proof.

Let Si denote the set of n such that Mi queried some Ãn,F.

For all m ∈ Si \ Ti , other than ni , and all F, set Ãn,F to the constant 0 polynomial.

For ni , we distinguish cases, depending on whether or not Mi accepted 1ni .

If Mi accepted 1ni , then we set Ãni ,F to the constant 0 polynomial for all F (and hence
L(ni) = 0).

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

NP ⊆ P does not algebrize

Proof.

If Mi rejected 1ni , then let YF = {y ∈ Fni | Mi queried Ãni ,F(y)}.

We must have that
∑

F|YF| ≤ n
log(ni)
i .

By the generalized adversary lemma, there exists w ∈ {0, 1}ni such that for all F, we
can choose a multiquadratic polynomial Ãni ,F : Fni → F such that

(i) Ãni ,F(y) = 0 for all y ∈ YF,

(ii) Ãni ,F(w) = 1, and

(iii) Ãni ,F(z) = 0 for all Boolean z ̸= w .

In particular, the answers to queries to Ãni ,F are consistent with all queries that have
been make so far, but Ãni ,F(w) = 1 for some w ∈ {0, 1}n.

Thus L(ni) = 1.

Introduction Algebrization Query complexity Algebraic query complexity The need for non-algebrizing techniques Conclusion

Concluding remarks

Some additional non-algebrizing statements:

1. PSPACE ̸⊆ P,

2. NP ⊆ BPP,

3. NP ⊆ P/poly,

4. NEXP ̸⊆ P/poly,

5. EXPNP ̸⊆ P/poly,

6. and more....

Questions?

	Introduction
	Algebrization
	Query complexity
	Algebraic query complexity
	The need for non-algebrizing techniques
	Conclusion

