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Abstract

Domain theory was introduced by Dana Scott in the 1960s, motivated by the search for a denotational seman-
tics of the lambda calculus. Denotational semantics is concerned with the mathematical meaning of programming
languages, where programs are to be interpreted as morphisms in certain categories. This talk will introduce the
basic theory of domains, viewed as both order-theoretic structures and topological spaces, and explore some of
their friendly properties that make them uniquely suitable for modeling computer programs. We will explore the
connections between computability and continuity, and discuss the role of domains in the semantics of program-
ming languages - in particular interpreting recursive definitions as least fixpoints. Basic concepts in order theory,
category theory, and topology will be used but no advanced understanding of these is required from the audience.

1 Motivation

1.1 Denotational Semantics

Programming language semantics is concerned with giving meaning to valid pieces of syntax in a programming
language, such that one can reason about both programs written in the language and about the language itself
(metatheory)

There are three primary approaches to PL semantics

e Operational Semantics: rules that define how programs are executed/evaluated, eg. S-reduction

e Denotational Semantics: assign each program to a mathematical object - a “model theory” of programming
languages

e Axiomatic semantics - programs are defined by their effect on the theory of the program state, that is the
collection of properties which hold of the program state - eg. Hoare logic

A useful analogy is that operational semantics correspond to an idealized interpreter, denotational semantics to an
idealized compiler, and axiomatic semantics to an idealized verifier.



More precisely, denotational semantics takes each syntactic object ¢ in a programming language to a mathematical
object [t]. The important property that any denotational semantics must have is compositionality: the denotation
of a term is defined in terms of the denotation of its subterms, that is our denotation function

[-] : Syntax — Semantics

must be a homomorphism.

1.2 Historical Motivations

As mentioned, domain theory was introduced as a way of providing a mathematical model of the untyped lambda
calculus. Here we describe the problem which gave rise to domain theory.

To give a denotational semantics for the untyped A-calculus requires defining a mathematical structure D such
that, since there are no types, all terms can be interpreted as having type D. More specifically, we are looking to
construct a category with one object (up to isomorphism) D. Now consider the self application term Az.zz. If the
entire term xx has type D, and the second occurrence of = has type D, then the first occurrence can only be sensibly
thought of as having type [D — D]. This means we require that

D= [D — D]

We need a one object category that is closed under internal hom. If we view [ — -] as a functor F : C? x C — C
over some category C, then what we are looking for is a fixpoint D = F(D, D)

Domain theory ends up being the solution here - terms were interpreted as continuous functions on a topological
space D which is isomorphic to its own function space. These spaces are called domains.

1.3 Key Insights
There a few key insights from domain theory which speak to its utility in theoretical computer science:
1. Certain categories of domains are Cartesian closed, and thus give rise to models of typed A-calculi.

2. Domains formalize the notion of partial information, and can be thought of as orderings on information content.
A least element | is interpreted as having “no information”, and can represent undefined values, or diverging
computations.

2 Domain Theory

In this section we define our main objects of interest, constructions on them such as products, sums, and expo-
nentials, we provide a topological view of our structures of interest, and we give a toy example of a denotational
semantics.

2.1 Dcpo’s

We will provide definitions for directed completeness and continuity, and arrive at a fixpoint theorem that will
be used in modeling loops and recursive functions.

Definition 1. depo: Given a poset (D, <) and a nonempty subset A C D, we say D is directed iff
Ve,ye A,ze Ajx<zAy<z

D s called directed complete if every directed A C D has a supremum, \/ A. If D moreover has a least element L,
we say it is a complete partial order (cpo)

Example 1. Any non empty chain is directed

Definition 2. continuous: Given dcpo’s D,D’, a function f : D — D' is continuous iff it is monotone and
preserves directed suprema, ie.

VA Cair D, F(\/ ) = \/ f(A)

Definition 3. The category Dcpo has as objects dcpos and as morphisms continuous functions, and the category
Cpo with cpos as objects is a full subcategory



In a comprehensive domain theory text, more subtle kinds of cpos are used as “domains”, namely continuous
domains and algebraic domains, but for the sake of this presentation our domains will be cpos.

Example 2. Given a set X, we take the set X | = X U{L}, with the orderingx <y <= x=yVa=_1. Thisis
called the flat domain on X

Domain theory revolves around the following thesis:
1. All semantic domains of computation are complete partial orders
2. Computable functions are continuous functions
Now the following theorem is the key to interpreting recursively defined functions or commands:

Theorem 1. Kleene’s fixpoint: Given a cpo D and an endomorphism f: D — D, \/ f* (L) is the least fizpoint
new
of f

2.2 Dcpo’s Topologically

Any topological space (X,QX) has an associated preorder called the specialization preorder, defined as follows:
r<y<=VYWeQX, zelU = yeU

A Kolmogorov space or Tj space is exactly a topology whose specialization preorder is a partial order, more precisely
is antisymmetric in the following sense:

r#y = U € QX, exactly one of x or y is in U

Want to define a Tj) topology for dcpos such that
1. The specialization order is the dcpo
2. Functions which are continuous on the ordering are exactly those which are continuous on the topology

The opens of a topological space X are in bijective correspondence with the continuous functions X — {0,1}
(the Sierpinski space), this is easy to see, given an open set U take xr : X — {0,1} and given f : {0,1} take f~1(1)

Definition 4. (Scott topology). A subset A C D of a dcpo is called Scott open if

l.zeAandz <y = y € A (upward closed)

2. A directed and \| A € A = Jx € A,z € A (If a directed set converges into the open, it must touch the open)
The collection Qs(D) of Scott opens is called the Scott topology on D

The following facts say we found what we were looking for:
Theorem 2. Qg is Ty and the specialization order of (D,Qg) is (D, <)
Theorem 3. For any Dcpos D, D’

Homrop (D, D') = Hompepo(D, D')

2.3 Constructions on Dcpo’s

Here we talk about some properties of the category of domains, in particular it being Cartesian closed. Cartesian
closedness tells us our category at least gives a model of the simply typed lambda calculus.

2.3.1 Products

We can define arbitrary products in our categories Dcpo and Cpo as follows:
Given a family of cpos { X }ier, their product H X; is their Cartesian product, with the component-wise ordering
il
and component-wise supremum



2.3.2 Exponentials
We may also define the Cpo [X — Y] as the set of continuous functions from X to Y, with the following ordering:
f<g &= VzeX, f(z) <y g(z)
We then have
1. The function apply : (X = Y) x X — Y defined as apply(f,z) = f(x) is continuous

2. Given continuous f: X XY — Z, the function curry(f) : X — (Y — Z) defined as curry(f)(a) = Abf(a,b) is
continuous

These satisfy the following universal property:

AxB—7 ¢

|

|

i
curry(f)xidpi
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|

~

(B—-C)xB

Telling us that the category Cpo has exponentials, and is thus Cartesian closed.

2.3.3 Limits

Remark 1. Dcpo has limits and colimits of arbitrary diagrams, thus is Cartesian closed, complete, and cocomplete

3 Recursion and Fixpoints

Now in the last part, we show how recursively defined programming constructs can be interpreted as least fixpoints
in a cpo
3.1 Recursion in Typed Lambda Calculus via Y

We consider a simply-typed lambda calculus extended with a fixpoint combinator Y satisfying the reduction rule:

Y M — M(Y M)

This allows recursive definitions without requiring a full language specification. We assume the presence of base
types (such as N, B) and function types o — 7.
Denotational Setting. Each type is interpreted as an object in the category Cpo:

e Base types are interpreted as cpos, for example [N] = N

e Function types are interpreted as exponentials: [o — 7] = [[o] — [7]]

In particular, for Y M to be well-typed, we assume M : ¢ — o, so that Y M : o.

Operational vs Denotational Behavior. The operational rule
YM — M(YM)

unfolds the recursion. Semantically, this suggests that [Y" M should be a fixed point of the function [M] : [o] — [o].
Domain theory guarantees that every continuous function on a cpo has a least fixed point:

Fix(f) = \/ /(1)
neN

This fixpoint is taken to be the meaning of Y M:
[y M] = Fix([M])



Continuity and Soundness. Because M is a well-typed term, its interpretation [M] is continuous. Hence, the
least fixed point exists and gives a well-defined denotation for Y M.
This interpretation agrees with the operational semantics: the denotational meaning of Y M is the limit of the
unfolding
YM - MYM)—> MMYM))—...

and this corresponds precisely to the chain
LS <)<

in the domain [o], whose supremum is [Y M].

3.2 Recursive Types via Functorial Fixpoints

We have seen how recursive functions are interpreted as least fixpoints of continuous endofunctions on cpos:
f:D—-D, Fix(f)=\/f"(L)
n

This idea extends beyond functions to recursive types. To capture types like lists or trees, we want to solve
equations of the form:
D = F(D)

where F' is no longer a function but a functor:
F:Cpo — Cpo

Our goal is to give meaning to such domain equations by finding their least solutions, just like for functions. To
do this, we need to generalize the notion of continuity from functions to functors.

The Category Cpo. Recall that Cpo is the category whose:
e objects are cpos (complete partial orders with least elements),
e morphisms are continuous functions (i.e., monotone maps preserving directed suprema).

This category is not just complete and cocomplete — it is also enriched over itself in a useful way: we can define
an ordering on objects and use it to construct colimits.

Chains of CPOs. To define a notion of approximation between objects in Cpo, we look at chains:
Do % Dy 5 Dy 22

where each f,, is a continuous embedding (e.g., an injective continuous function with dense image). This forms a
diagram in Cpo, and we can take its colimit — the “limit” object that coherently includes all the D,,’s.

This colimit plays the same role as the supremum of an increasing chain in ordinary domain theory: it is a kind
of “limit of approximations.”

Cocontinuous Functors. We now want to lift the idea of continuity to functors:

Definition 5. A functor F : Cpo — Cpo is cocontinuous if it preserves colimits of w-chains. That is, for any
chain of cpos
Do—)D1—>D2—)...

with colimit colim D,,, we have:
F(colim D,;) & colim F(D,,)

This is the functorial analogue of Scott continuity: a function f: D — D is continuous if it preserves least upper
bounds of directed sets; a functor is cocontinuous if it preserves colimits of directed diagrams of domains.



Fixpoints of Functors. If F' is cocontinuous, we can build the least fixpoint of F' by iterating it from the bottom
object:

JRECNY ERIELNS TR IECN

and taking the colimit:
wF = colim,enF™ (L)

This solves the domain equation:
pk = F(uF)

in a canonical way, just like how Fix(f) is the least fixpoint of a continuous function.

Example: Binary Numbers. Consider the inductive type of binary numerals defined by:
data B = Zero B | Empty | One B

This corresponds to the domain equation:
B~B+1+B

Define a functor:
FX)=X+1+X

F(fy=f+idi+f

Then F' : Cpo — Cpo is cocontinuous.
The semantics of B is then the least fixpoint of F', ie. the colimit of the diagram:

Az. L F(Ax.l) FF(Az.l)
EE——

1 FFF(1)...

F(1) FF(1)

If you recall from an earlier GLoS talk by Oualid, inductive types are initial algebras of a certain endofunctor
- that’s precisely what is being done here: a solution to this domain equation is an initial algebra, and initiality is
exactly “leastness” in our ordering.



