
Monads in Lean

Tanner Duve, Lean Reading Seminar

10/08/2024

Introduction

Monads are mathematical structures originating from category theory and used
in algebra to model various constructs. In functional programming, particularly
in pure functional languages like Lean, monads provide a way to handle side
effects within a pure functional framework.

A pure function is one that, given the same inputs, always produces the same
outputs and does not cause any observable side effects. A side effect refers to
any interaction with the outside world or alteration of state that persists beyond
the function’s scope, such as modifying a variable, reading user input, logging
outputs, or changing global state.

Functional programming languages like Lean enforce purity to ensure that
functions are predictable and composable. However, real-world programs often
need to perform actions that involve side effects. Monads allow us to model
these side effects by encapsulating them within monadic types. This enables us
to sequence computations involving side effects while keeping the core functions
pure and the code maintainable.

A side effect that’s important to us as Lean programmers is being able to
alter the proof state when writing a proof, and we do this using tactics - this is in
fact defined by a tactic monad, which will be discussed in a future presentation.

Category Theory Basics

Definition: A category C consists of:

• A collection of objects Ob(C).

• For any pair of objects A,B ∈ Ob(C), a set of morphisms (or arrows)
HomC(A,B).

These satisfy:

• (Composition) For any f : A → B and g : B → C, there exists a
composition g ◦ f : A → C.

1

• (Associativity) For all composable morphisms f, g, h, we have h◦(g◦f) =
(h ◦ g) ◦ f .

• (Identity) For each object A, there exists an identity morphism idA : A →
A such that for any morphism f : A → B, we have idB ◦ f = f = f ◦ idA.

Examples of Categories:

• Set: Objects are sets, morphisms are functions between sets.

• Grp: Objects are groups, morphisms are group homomorphisms.

• Mon: Any monoid can be viewed as a category with a single object where
morphisms are the elements of the monoid, and composition is given by
the monoid operation.

Definition: A functor F : C → D between categories C and D consists of:

• For each object A ∈ Ob(C), an object FA ∈ Ob(D).

• For each morphism f : A → B in C, a morphism Ff : FA → FB in D.

Such that:

• For all composable morphisms f : A → B and g : B → C, we have
F (g ◦ f) = Fg ◦ Ff .

• For all objects A ∈ Ob(C), F (idA) = idFA.

Examples of Functors:

• The forgetful functor U : Grp → Set maps a group to its underlying set
and group homomorphisms to their underlying functions.

• The free group functor F : Set → Grp assigns to each set the free group
generated by that set.

Definition: Given functors F,G : C → D, a natural transformation τ : F →
D is a family of morphisms {τA : FA → GA}A∈Ob(C), such that for any mor-
phism f : A → B:

Gf ◦ τA = τA ◦ Ff

Monads in Category Theory

Definition: A monad (T, η, µ) on a category C consists of:

• An endofunctor T : C → C.

• A natural transformation ηA : 1 → T (called the unit).

• A natural transformation µ : T 2 → T (called the multiplication).

2

These satisfy the following coherence conditions:

• (Associativity) The diagram

T 3A T 2A

T 2 TA

TµA

µTA µA

µA

commutes.

• (Unit Laws) The diagrams

TA T 2A

T 2A TA

TηA

ηTA µA

µA

commute.

These conditions ensure that T behaves like a monoid in the category of
endofunctors on C, with µ as the multiplication and η as the unit.

Examples

The Powerset Monad Consider the endofunctor P : Set → Set, which
maps a set X to its powerset P (X), and a function f : X → Y to the function
Pf : P (X) → P (Y) defined by Pf(S) = f [S] for S ⊆ X.

We define the monad structure:

• The unit ηX : X → P (X) is ηX(x) = {x}.

• The multiplication µX : P (P (X)) → P (X) is µX(S) =
⋃
S.

Monads in Functional Programming

Type Classes

In functional programming, type classes define a set of operations that a type
must implement. They are similar to interfaces in object-oriented programming
and allow for polymorphism and code reuse. For example, a Functor type class
in Lean can be defined as:

class Functor (f : Type → Type) :=

(map : (a → b) → f a → f b)

A common instance of Functor is the List type, which implements the map
operation to apply a function to each element.

3

Monads

Definition: In functional programming, a Monad is defined by the following
type class:

class Monad (m : Type → Type) :=

(pure : a → m a)

(bind : m a → (a → m b) → m b)

Here, pure corresponds to the unit η, but you may notice that bind looks
different from µ. Monads in functional programming actually use an alternative
but equivalent definition called a Kleisli triple or extension system.

Kleisli Triples and Extension Systems

Equivalence to Monads Any Kleisli triple defines a monad by setting µ in
terms of bind:

mu : m (m a) → m a

mu x = bind x (fun y => y)

Conversely, given a monad (T, η, µ), we can define bind as:

bind x f = mu (map f x)

This shows that the functional programming definition of a monad is equivalent
to the categorical one. The Kleisli triple emphasizes the way we can chain
computations, which is particularly useful in programming.

Why Use Bind?

We often work with functions of the form f : A → TB in monadic contexts,
where T is a monad. These functions represent computations that produce a
result of type B along with some monadic effects encapsulated by T .

When we try to compose two such functions f : A → TB and g : B → TC,
we encounter a problem: standard function composition doesn’t work because
f outputs a value of type TB, but g expects an input of type B.

To resolve this, we use the monadic bind operation to sequence the compu-
tations while properly handling the effects. The composition is defined as:

(f ≫ g)(a) = bind(f(a), g)

Here, bind takes the monadic value f(a), unwraps it to obtain a value of type
B, applies g to it, and wraps the result back into the monadic context TC.

This allows us to chain computations A → TB and B → TC into a new
computation A → TC, effectively composing the functions within the monadic
context. This method of composition forms what is known as a Kleisli category
for the monad T .

4

Example

The Writer Monad
The Writer monad allows us to augment computations with a log or addi-

tional output. Let M be a monoid (e.g., strings with concatenation). We con-
sider functions f : A → B representing computations. In the Kleisli category for
the Writer monad, we lift these functions to Kleisli morphisms f ′ : A → B×M ,
which perform the computation f and produce an additional output in M (e.g.,
a log message).
Monad Structure in Lean:
We define the monadic structure of the Writer monad in Lean as follows:

instance : Monad (M : A -> A × M) where

pure a := (a, e)

bind x f :=

let (a, m1) := x

let (b, m2) := f a

(b, m1 <> m2)

Here:

• e is the identity element of the monoid M .

• <> represents the monoid operation in M (e.g., string concatenation).

Composition:
In the Kleisli category, composition of morphisms f ′ : A → B×M and g′ : B →
C ×M is defined using bind:

(f ′ >=> g′)(a) = bind(f ′(a), g′)

This composition combines both the computational results and accumulates
the logs using the monoid operation. In Haskell this is often called the “fish
operator”
Application: Calculations with Logging

Using the Writer monad, we can perform calculations while logging messages.
For example, suppose are performing arithmetic calculations and with each
calculation we write a message to the screen. By composing these computations
using the monadic structure, we can arrive at a final calculation with a sequence
of annotations at each step.

This allows us to model side effects like logging within the pure functional
framework of Lean, utilizing the monadic structure to sequence computations
and manage the accumulation of logs.

1 The Tactic Monad

When we write our Lean proofs, there is a proof state which gets updated as
we apply tactics, and tactics can either fail or succeed. Both of these features

5

appear to be impure - we have mutable state and functions that may not have an
output. You’ve likely guessed then that these features are handled by monads.
As we’ve seen, monadic programming allows us to simulate side effects while
also composing effectful computations in a pure functional way.

The type of a function that can inspect the proof state, modify it, and
potentially return something of type α (or fail) is called tactic α. In this
section we will talk about the tactic monad by introducing at a high level
how it is designed, which will require some discussion of monad transformers,
as well as how it works and what we can do with it by writing our own tactics.
Using the tactic monad to write custom tactics is called metaprogramming and
is another interesting feature of Lean - you can write new Lean features in Lean
itself.

1.1 Monad Transformers

Note some of the features of tactic mode, we have access to global state, includ-
ing definitions, theorems, inductive types, notations, etc. Tactics also behave
like the option monad, by failing or succeeding. Further they can be used to dis-
play messages, like the writer monad, and most importantly the provide access
to the list of goals.

The question is then, how do we package together all these monadic effects
into a single monad? The answer is monad transformers. A monad transformer
is a way to supplement a monad with additional effects. Monads can be built up
by composing monad transformers, resulting in monads packaged with multiple
effects.

The tactic monad needs to be able to read global context, and mutate state
- this is done with the reader monad transformer and the state monad trans-
former.

1.1.1 Reader Monad

In Lean, certain computations require consistent access to shared, immutable
context—such as configuration settings or global definitions—throughout their
execution. Rather than manually passing this context to every function, the
reader monad encapsulates the ability to implicitly read from a shared environ-
ment.

Now, to make any monad context-aware, we can use the ReaderT monad
transformer. ReaderT takes a type for the environment and adds it to any
existing monad. It is defined as follows:

def ReaderT (p : Type u) (m : Type u → Type v) (a : Type u) : Type (max u v) :=

p -> m a

Its arguments are as follows:

• p is the environment that is accessible to the reader

• m is the monad that is being transformed, such as IO

6

• a is the type of values being returned by the monadic computation

• Both a and p are in the same universe because the operator that retrieves
the environment in the monad will have type m p.

The Monad instance of ReaderT is given as follows:

instance [Monad m] : Monad (ReaderT p m) where

pure x := fun _ => pure x

bind result next := fun env => do

let v ← result env

next v env

ReaderT Monad Example To demonstrate how the ReaderT monad trans-
former allows access to shared context within a computation in Lean, consider
the following example. We define a configuration that provides a multiplier fac-
tor and use it in a computation without explicitly passing the configuration to
every function.

Defining the Configuration
First, we define a simple structure to hold our configuration data:

structure Config where

factor : Int

The Config structure contains a single field, factor, which represents the
multiplier factor used in our computations. This structure serves as the shared
environment that our monadic computations will access.

Understanding the Identity Monad (Id)
In this example, we use the Idmonad as the base monad for ReaderT. The Id

monad is a fundamental monad in Lean that does not introduce any additional
computational effects. It is defined simply as:

def Id (: Type) : Type :=

instance : Monad Id where

pure x := x

bind x f := f x

Explanation: The Id monad allows us to utilize monadic operations without
introducing extra effects such as IO, state, or error handling. It essentially acts
as a wrapper that passes values through unchanged. By using Id as the base
monad in ReaderT Config Id, we create a reader monad that solely provides
access to the shared environment (Config) without layering additional effects.
This simplifies our example, focusing purely on the Reader functionality.

Creating a ReaderT Computation
Next, we define a computation within the ReaderT monad that accesses the

configuration and performs a multiplication:

7

def multiplyByFactor : ReaderT Config Id Int :=

do

config ← ReaderT.get

pure (config.factor * 10)

In this computation:

• ReaderT.get retrieves the current Config from the environment.

• We then multiply the factor by 10 and return the result using pure,
which wraps the value back into the monad.

Running the Computation
Finally, we execute the computation by providing a specific configuration:

def example : Int :=

let config := { factor := 5 }

multiplyByFactor.run config -- Evaluates to 50

Here:

• We create an instance of Config with factor = 5.

• multiplyByFactor.run config executes the computation using the pro-
vided config, resulting in 50.

This example demonstrates how the ReaderT monad transformer allows ac-
cess to shared environment data seamlessly. By defining computations within
the ReaderT monad, we avoid the need to pass the configuration explicitly to
each function, resulting in cleaner and more maintainable code.

1.1.2 The State Monad

The StateT monad transformer allows us to incorporate mutable state into
our computations in Lean. It enables functions to access and modify a shared
state without explicitly passing the state around. This is particularly useful
for modeling scenarios where state needs to be threaded through a series of
computations.

Defining the StateT Monad
First, we define the StateT monad transformer. It takes three parameters:
- s: The type of the state.
- m: The underlying monad.
- a: The type of the result.

def StateT (s : Type u) (m : Type u → Type v) (a : Type u) : Type (max u v) :=

s → m (a × s)

8

The StateT monad transformer is essentially a function that takes an initial
state of type s and returns a computation in the monad m that produces a result
of type a along with a new state.

Monad Instance for StateT
Next, we define the Monad instance for StateT. This allows us to use monadic

operations such as pure and bind within the StateT monad.

instance [Monad m] : Monad (StateT s m) where

pure x := fun s => pure (x, s)

bind result next := fun s => do

let (v, s’) ← result s

next v s’

Here, pure x creates a stateful computation that returns the value x without
modifying the state. The bind operation sequences two stateful computations
by passing the updated state from the first computation to the second.

State Operations: get and set
To interact with the state within the StateT monad, we define two essential

operations: get and set.

def get : StateT s m s :=

fun s => pure (s, s)

def set (s’ : s) : StateT s m Unit :=

fun _ => pure ((), s’)

The get function retrieves the current state, while set s’ updates the state
to s’.

Example: Incrementing a Counter
Consider a simple example where we increment a counter within a stateful

computation.

structure Counter where

count : Nat

deriving Repr

def increment : StateT Counter Id Unit :=

do

counter ← get

let newCount := counter.count + 1

set { count := newCount }

def runIncrement : Counter :=

let initialState := { count := 0 }

let (_, finalState) := increment { count := 0 }

finalState

9

In this example: - Counter is a structure that holds a single field count. -
increment is a stateful computation that retrieves the current counter, incre-
ments it by one, and updates the state. - runIncrement executes the increment
computation starting with an initial state where count is zero, resulting in a
final state where count is one.

This toy example demonstrates how the StateT monad transformer in Lean
facilitates stateful computations. By using StateT, we can thread state through
our functions without manually passing it, leading to cleaner and more main-
tainable code.

1.2 Tactic Monad Roughly Defined

The tactic monad is defined in terms of these two monad transformers, so that
it can read global context as well as manipulate state. We won’t go too far into
the details of the definition but here is how it is specified:

abbrev TacticM := ReaderT Context $ StateT State TermElabM

abbrev Tactic := Syntax → TacticM Unit

Where Context is a metaprogram which captures the gloabal context of the
program, and State is the proof state. TermElabM is a monad which is also built
similarly out of monad transformers. There is in fact a hierarchy of monads that
is built up by iteratively applying TacticM := ReaderT Context $ StateT State.
At the base of the hierarchy is the BasicIO monad, and TacticM is at the top.

1.2.1 Building A Custom Tactic

In Lean, tactics allow us to manipulate the proof state, automating repetitive
proof steps and enhancing Lean’s proof capabilities. Writing custom tactics can
make proofs more efficient and readable. To do this, we work within the tactic
monad, which manages the proof state, enabling state inspection, modification,
and handling of potential failures.

In this example, we’ll create a custom tactic, my assumption, that searches
the local context for an assumption that can close the current goal.

Basic Tactic Structure A tactic in Lean is defined as a function of type
tactic α, where α is the type of the return value. Tactics that only modify
the proof state without returning a specific value use tactic unit. We use
the meta keyword to indicate these are for metaprogramming purposes, so they
don’t need to satisfy the standard checks for non-meta functions.

meta def my_first_tactic : tactic unit := tactic.trace "Hello, World."

In this basic example, my first tactic prints ”Hello, World” to the message
buffer.

10

Creating a Useful Tactic: my assumption To build our my assumption

tactic, we first define a helper function, find matching type, which checks
if any assumption in the local context has a type that matches the current
goal. This function will traverse the list of hypotheses, attempting to unify each
hypothesis’s type with the target type of the goal.

meta def find_matching_type (e : expr) : list expr → tactic expr

| [] := tactic.failed

| (H :: Hs) := do t ← tactic.infer_type H,

(tactic.unify e t >> return H) <|> find_matching_type Hs

Here’s a breakdown of the control flow:

• find matching type takes an expression e (the target type) and a list of
expressions (hypotheses).

• If the list is empty, the tactic fails.

• For each hypothesis H:

– Infer H’s type t using tactic.infer type H.

– Attempt to unify e with t. If successful, return H.

– If unification fails, recurse on the remaining hypotheses.

Next, we define the my assumption tactic itself, using find matching type

to locate a hypothesis in the local context that matches the current goal’s type
and apply it.

meta def my_assumption : tactic unit :=

do { ctx ← tactic.local_context,

t ← tactic.target,

find_matching_type t ctx >>= tactic.exact }

<|> tactic.fail "my_assumption tactic failed"

Explanation of each part:

• tactic.local context: Retrieves the list of current hypotheses.

• tactic.target: Obtains the current goal, which we aim to prove.

• find matching type t ctx: Searches for a hypothesis in ctx with a type
that unifies with t.

• >>= tactic.exact: If a matching hypothesis H is found, applies tactic.exact
H to close the goal.

• <|> tactic.fail "...": If no matching hypothesis is found, the tactic
fails with an error message.

11

Example Usage The my assumption tactic can be used in proofs as follows:

example (a b j k : Z) (h1 : a = b) (h2 : j = k) :

a + j = b + k :=

begin

my_assumption,

trivial

end

In this example:

• my assumption searches the local context for hypotheses that could match
the goal, applying them if found.

• If successful, the proof state is updated; if not, an error is returned.

Conclusion By creating my assumption, we’ve seen how to manipulate the
proof state, retrieve and unify expressions, and handle potential failures. Writ-
ing custom tactics in Lean allows us to automate proof steps, making proofs
more efficient and maintainable. This example serves as a foundation for more
advanced tactics, opening possibilities for complex automated proof strategies
within Lean.

12

	The Tactic Monad
	Monad Transformers
	Reader Monad
	The State Monad

	Tactic Monad Roughly Defined
	Building A Custom Tactic

